p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊C4, C22.2D4, C23.1C22, (C2×C4)⋊C4, C22⋊C4⋊1C2, (C2×D4).1C2, C22.2(C2×C4), C2.3(C22⋊C4), SmallGroup(32,6)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊C4
G = < a,b,c,d | a2=b2=c2=d4=1, ab=ba, ac=ca, dad-1=abc, dbd-1=bc=cb, cd=dc >
Character table of C23⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | i | -1 | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | i | 1 | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -1 | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -i | 1 | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2)(3 5)(4 8)(6 7)
(1 3)(2 5)(4 7)(6 8)
(1 6)(2 7)(3 8)(4 5)
(1 2 3 4)(5 6 7 8)
G:=sub<Sym(8)| (1,2)(3,5)(4,8)(6,7), (1,3)(2,5)(4,7)(6,8), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8)>;
G:=Group( (1,2)(3,5)(4,8)(6,7), (1,3)(2,5)(4,7)(6,8), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8) );
G=PermutationGroup([[(1,2),(3,5),(4,8),(6,7)], [(1,3),(2,5),(4,7),(6,8)], [(1,6),(2,7),(3,8),(4,5)], [(1,2,3,4),(5,6,7,8)]])
G:=TransitiveGroup(8,19);
(2 7)(3 8)
(2 7)(4 5)
(1 6)(2 7)(3 8)(4 5)
(1 2 3 4)(5 6 7 8)
G:=sub<Sym(8)| (2,7)(3,8), (2,7)(4,5), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8)>;
G:=Group( (2,7)(3,8), (2,7)(4,5), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8) );
G=PermutationGroup([[(2,7),(3,8)], [(2,7),(4,5)], [(1,6),(2,7),(3,8),(4,5)], [(1,2,3,4),(5,6,7,8)]])
G:=TransitiveGroup(8,20);
(1 5)(2 6)(3 8)(4 7)
(1 4)(5 7)
(1 4)(2 3)(5 7)(6 8)
(1 2)(3 4)(5 6 7 8)
G:=sub<Sym(8)| (1,5)(2,6)(3,8)(4,7), (1,4)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8)>;
G:=Group( (1,5)(2,6)(3,8)(4,7), (1,4)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8) );
G=PermutationGroup([[(1,5),(2,6),(3,8),(4,7)], [(1,4),(5,7)], [(1,4),(2,3),(5,7),(6,8)], [(1,2),(3,4),(5,6,7,8)]])
G:=TransitiveGroup(8,21);
(1 10)(2 9)(3 5)(4 8)(6 16)(7 15)(11 14)(12 13)
(1 3)(2 14)(4 16)(5 10)(6 8)(7 12)(9 11)(13 15)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,10)(2,9)(3,5)(4,8)(6,16)(7,15)(11,14)(12,13), (1,3)(2,14)(4,16)(5,10)(6,8)(7,12)(9,11)(13,15), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,10)(2,9)(3,5)(4,8)(6,16)(7,15)(11,14)(12,13), (1,3)(2,14)(4,16)(5,10)(6,8)(7,12)(9,11)(13,15), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,10),(2,9),(3,5),(4,8),(6,16),(7,15),(11,14),(12,13)], [(1,3),(2,14),(4,16),(5,10),(6,8),(7,12),(9,11),(13,15)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,33);
(2 11)(3 13)(4 6)(5 12)(8 16)(9 14)
(1 7)(2 11)(3 5)(4 9)(6 14)(8 16)(10 15)(12 13)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (2,11)(3,13)(4,6)(5,12)(8,16)(9,14), (1,7)(2,11)(3,5)(4,9)(6,14)(8,16)(10,15)(12,13), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (2,11)(3,13)(4,6)(5,12)(8,16)(9,14), (1,7)(2,11)(3,5)(4,9)(6,14)(8,16)(10,15)(12,13), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(2,11),(3,13),(4,6),(5,12),(8,16),(9,14)], [(1,7),(2,11),(3,5),(4,9),(6,14),(8,16),(10,15),(12,13)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,52);
(1 10)(2 8)(3 5)(4 9)(6 14)(7 15)(11 16)(12 13)
(2 16)(4 14)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,10),(2,8),(3,5),(4,9),(6,14),(7,15),(11,16),(12,13)], [(2,16),(4,14),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,53);
C23⋊C4 is a maximal subgroup of
C23.C23 C2≀C22 D10.D4 C23⋊F5 C62.2D4 (C6×C12)⋊C4 (C2×C62)⋊C4 D26.D4 D26.4D4
C23.D2p: C2≀C4 C23.D4 C42⋊C4 C42⋊3C4 C23.7D4 C23.6D6 C23.7D6 C23.1D10 ...
C23⋊C4 is a maximal quotient of
C23⋊C8 C22.M4(2) C42.C4 C42.3C4 D10.D4 C23⋊F5 C62.2D4 (C6×C12)⋊C4 (C2×C62)⋊C4 D26.D4 D26.4D4
C23.D2p: C22.SD16 C23.31D4 C23.9D4 C2≀C4 C23.D4 C42⋊C4 C42⋊3C4 C23.6D6 ...
action | f(x) | Disc(f) |
---|---|---|
8T19 | x8-14x6+36x4-28x2+4 | 232·174 |
8T20 | x8-4x7-5x6+24x5+14x4-36x3-20x2+6x+1 | 28·56·612 |
8T21 | x8-14x6+39x4-32x2+8 | 227·174 |
Matrix representation of C23⋊C4 ►in GL4(ℤ) generated by
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
G:=sub<GL(4,Integers())| [1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;
C23⋊C4 in GAP, Magma, Sage, TeX
C_2^3\rtimes C_4
% in TeX
G:=Group("C2^3:C4");
// GroupNames label
G:=SmallGroup(32,6);
// by ID
G=gap.SmallGroup(32,6);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,40,61,302,248]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations
Export
Subgroup lattice of C23⋊C4 in TeX
Character table of C23⋊C4 in TeX